Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 158
1.
Sci Rep ; 14(1): 7746, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565861

Diabetes Mellitus is a metabolic disease characterized by elevated blood sugar levels caused by inadequate insulin production, which subsequently leads to hyperglycemia. This study was aimed to investigate the antidiabetic potential of pyrazolobenzothiazine derivatives in silico, in vitro, and in vivo. Molecular docking of pyrazolobenzothiazine derivatives was performed against α-glucosidase and α-amylase and compounds were selected based on docking score, bonding interactions and low root mean square deviation (RMSD). Enzyme inhibition assay against α-glucosidase and α-amylase was performed in vitro using p-nitrophenyl-α-D-glucopyranoside (PNPG) and starch substrate. Synthetic compound pyrazolobenzothiazine (S1) exhibited minimal conformational changes during the 100 ns MD simulation run. S1 also revealed effective IC50 values for α-glucosidase (3.91 µM) and α-amylase (8.89 µM) and an enzyme kinetic study showed low ki (- 0.186 µM, - 1.267 µM) and ki' (- 0.691 µM, - 1.78 µM) values with the competitive type of inhibition for both enzymes α-glucosidase and α-amylase, respectively. Moreover, studies were conducted to check the effect of the synthetic compound in a mouse model. A low necrosis rate was observed in the liver, kidney, and pancreas through histology analysis performed on mice. Compound S1 also exhibited a good biochemical profile with lower sugar level (110-115 mg/dL), increased insulin level (25-30 µM/L), and low level of cholesterol (85 mg/dL) and creatinine (0.6 mg/dL) in blood. The treated mice group also exhibited a low % of glycated haemoglobin (3%). This study concludes that S1 is a new antidiabetic-agent that helps lower blood glucose levels and minimizes the complications associated with type-II diabetes.


Hyperglycemia , Hypoglycemic Agents , Mice , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Hyperglycemia/drug therapy , Insulin , alpha-Amylases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Structure-Activity Relationship
2.
Int J Biol Macromol ; 267(Pt 1): 129256, 2024 May.
Article En | MEDLINE | ID: mdl-38493823

In the present study, the commercially available three different fabrics cotton, nylon and cotton/nylon were modified by chitosan and silver nanoparticles using a crosslinker triethyl orthoformate (TEOF). Resulted cotton­silver (Ag-Cs-Cot), nylon­silver (Ag-Cs-Nyl) and cotton-nylon silver (Ag-Cs-Cot-Nyl) fabrics showed significant anti-bacterial activity even after 50 washing cycles. Silver nanoparticles were prepared by reducing silver nitrate through sodium borohydride at 0 °C. In FTIR spectra the peak at near 1650 cm-1 confirmed that TEOF mediated attachment of chitosan with fabrics (due to C=N) and the stretching of secondary amine near the 3375 cm-1 indicated the silver attachment to the amine group of the chitosan. In Scanning Electron Microscope (SEM) images smooth surfaces of fabrics without any damage by modification process were observed. The antibacterial activity was Analyzed by agar diffusion and broth dilution assays against Escherichia coli and Staphylococcus aureus bacterial strains and results showed 90% bacterial inhibition against E. coli and 89% bacterial inhibition against S. aureus. For testing the antibacterial durability, the modified fabrics were washed with non-ionic detergent (10g/l) for 15 minutes under aggressive stirring (100 rpm) at room temperature. The modified fabrics retained antibacterial activity over the 50 washing cycles. Finally, the commercial potential of cotton-silver fabric was evaluated by stitching it with the socks of football players and interestingly results showed that the modified fabric on the socks showed more than 90% bacterial inhibition as compared to the plain fabric after 70 minutes of playing activity.


Anti-Bacterial Agents , Chitosan , Cotton Fiber , Escherichia coli , Metal Nanoparticles , Nylons , Silver , Staphylococcus aureus , Textiles , Chitosan/chemistry , Chitosan/pharmacology , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nylons/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Formates/chemistry
3.
Int J Biol Macromol ; 263(Pt 1): 130296, 2024 Apr.
Article En | MEDLINE | ID: mdl-38382792

Despite the advantages of topical administration in the treatment of skin diseases, current marketed preparations face the challenge of the skin's barrier effect, leading to low therapeutic effectiveness and undesirable side effects. Hence, in recent years the management of skin wounds, the main morbidity-causing complication in hospital environments, and atopic dermatitis, the most common inflammatory skin disease, has become a great concern. Fortunately, new, more effective, and safer treatments are already under development, with chitosan, starch, silk fibroin, agarose, hyaluronic acid, alginate, collagen, and gelatin having been used for the development of nanoparticles, liposomes, niosomes and/or hydrogels to improve the delivery of several molecules for the treatment of these diseases. Biocompatibility, biodegradability, increased viscosity, controlled drug delivery, increased drug retention in the epidermis, and overall mitigation of adverse effects, contribute to an effective treatment, additionally providing intrinsic antimicrobial and wound healing properties. In this review, some of the most recent success cases of biopolymer-based drug delivery systems as part of nanocarriers, semi-solid hydrogel matrices, or both (hybrid systems), for the management of skin wounds and atopic dermatitis, are critically discussed, including composition and in vitro, ex vivo and in vivo characterization, showing the promise of these external drug delivery systems.


Dermatitis, Atopic , Humans , Dermatitis, Atopic/drug therapy , Wound Healing , Drug Delivery Systems , Biopolymers/pharmacology , Collagen/pharmacology , Hydrogels/pharmacology , Liposomes/pharmacology
4.
5.
Biomech Model Mechanobiol ; 23(2): 373-396, 2024 Apr.
Article En | MEDLINE | ID: mdl-38072897

Using liver phantoms for mimicking human tissue in clinical training, disease diagnosis, and treatment planning is a common practice. The fabrication material of the liver phantom should exhibit mechanical properties similar to those of the real liver organ in the human body. This tissue-equivalent material is essential for qualitative and quantitative investigation of the liver mechanisms in producing nutrients, excretion of waste metabolites, and tissue deformity at mechanical stimulus. This paper reviews the mechanical properties of human hepatic tissues to develop liver-mimicking phantoms. These properties include viscosity, elasticity, acoustic impedance, sound speed, and attenuation. The advantages and disadvantages of the most common fabrication materials for developing liver tissue-mimicking phantoms are also highlighted. Such phantoms will give a better insight into the real tissue damage during the disease progression and preservation for transplantation. The liver tissue-mimicking phantom will raise the quality assurance of patient diagnostic and treatment precision and offer a definitive clinical trial data collection.


Elasticity Imaging Techniques , Humans , Elasticity , Liver , Phantoms, Imaging , Acoustics
6.
Int J Biol Macromol ; 254(Pt 3): 127882, 2024 Jan.
Article En | MEDLINE | ID: mdl-37951446

Tissue engineering is an advanced and potential biomedical approach to treat patients suffering from lost or failed an organ or tissue to repair and regenerate damaged tissues that increase life expectancy. The biopolymers have been used to fabricate smart hydrogels to repair damaged tissue as they imitate the extracellular matrix (ECM) with intricate structural and functional characteristics. These hydrogels offer desired and controllable qualities, such as tunable mechanical stiffness and strength, inherent adaptability and biocompatibility, swellability, and biodegradability, all crucial for tissue engineering. Smart hydrogels provide a superior cellular environment for tissue engineering, enabling the generation of cutting-edge synthetic tissues due to their special qualities, such as stimuli sensitivity and reactivity. Numerous review articles have presented the exceptional potential of hydrogels for various biomedical applications, including drug delivery, regenerative medicine, and tissue engineering. Still, it is essential to write a comprehensive review article on smart hydrogels that successfully addresses the essential challenging issues in tissue engineering. Hence, the recent development on smart hydrogel for state-of-the-art tissue engineering conferred progress, highlighting significant challenges and future perspectives. This review discusses recent advances in smart hydrogels fabricated from biological macromolecules and their use for advanced tissue engineering. It also provides critical insight, emphasizing future research directions and progress in tissue engineering.


Hydrogels , Tissue Engineering , Humans , Hydrogels/chemistry , Regenerative Medicine , Extracellular Matrix/chemistry , Drug Delivery Systems
7.
Cell Mol Biol Lett ; 28(1): 98, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38031028

Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.


Alzheimer Disease , Induced Pluripotent Stem Cells , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Induced Pluripotent Stem Cells/physiology , Drug Evaluation, Preclinical , Neurons , Drug Discovery
8.
ACS Omega ; 8(43): 40024-40035, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37929099

Biopolymer-based bioactive hydrogels are excellent wound dressing materials for wound healing applications. They have excellent properties, including hydrophilicity, tunable mechanical and morphological properties, controllable functionality, biodegradability, and desirable biocompatibility. The bioactive hydrogels were fabricated from bacterial cellulose (BC), gelatin, and graphene oxide (GO). The GO-functionalized-BC (GO-f-BC) was synthesized by a hydrothermal method and chemically crosslinked with bacterial cellulose and gelatin using tetraethyl orthosilicate (TEOS) as a crosslinker. The structural, morphological, and wettability properties were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a universal testing machine (UTM), respectively. The swelling analysis was conducted in different media, and aqueous medium exhibited maximum hydrogel swelling compared to other media. The Franz diffusion method was used to study curcumin (Cur) release (Max = 69.32%, Min = 49.32%), and Cur release kinetics followed the Hixson-Crowell model. Fibroblast (3T3) cell lines were employed to determine the cell viability and proliferation to bioactive hydrogels. Antibacterial activities of bioactive hydrogels were evaluated against infection-causing bacterial strains. Bioactive hydrogels are hemocompatible due to their less than 0.5% hemolysis against fresh human blood. The results show that bioactive hydrogels can be potential wound dressing materials for wound healing applications.

9.
Int J Biol Macromol ; 253(Pt 5): 127169, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37783243

The development of advanced multifunctional wound dressings remains a major challenge. Herein, a novel multilayer (ML) electrospun nanofibers (NFs) wound dressing based on diethylenetriamine (DETA) functionalized polyacrylonitrile (PAN), TiO2 nanoparticles (NPs) coating (Ct), and bioderived gelatin (Gel) was developed for potential applications in wound healing. The ML PAN-DETA-Ct-Gel membrane was developed by combining electrospinning, chemical functionalization, synthesis, and electrospray techniques, using a layer-by-layer method. The ML PAN-DETA-Ct-Gel membrane is comprised of an outer layer of PAN-DETA as a barrier to external microorganisms and structural support, an interlayer TiO2 NPs (Ct) as antibacterial function, and a contact layer (Gel) to improve biocompatibility and cell viability. The NFs membranes were characterized by scanning electron microscopy (SEM), surface profilometry, BET analysis, and water contact angle techniques to investigate their morphology, surface roughness, porosity, and wettability. The ML PAN-DETA-Ct-Gel wound dressing exhibited good surface roughness, porosity, and better wettability. Cell morphology, proliferation, and viability were determined using fibroblasts (3T3), and antibacterial assays were performed against six pathogens. The ML PAN-DETA-Ct-Gel NFs membrane showed good cell morphology, proliferation, viability, and antibacterial activity compared with other membranes. This new class of ML NFs membranes offers a multifunctional architecture with adequate biocompatibility, cell viability, and antibacterial activity.


Gelatin , Nanofibers , Gelatin/chemistry , Nanofibers/chemistry , Amines , DEET , Anti-Bacterial Agents/chemistry , Bandages
10.
Mater Today Bio ; 22: 100764, 2023 Oct.
Article En | MEDLINE | ID: mdl-37674780

Chronic wounds are among the major healthcare issues affecting millions of people worldwide with high rates of morbidity, losses of limbs and mortality. Microbial infection in wounds is a severe problem that can impede healing of chronic wounds. Accurate, timely and early detection of infections, and real time monitoring of various wound healing biomarkers related to infection can be significantly helpful in the treatment and care of chronic wounds. However, clinical methodologies of periodic assessment and care of wounds require physical visit to wound care clinics or hospitals and time-consuming frequent replacement of wound dressing patches, which also often adversely affect the healing process. Besides, frequent replacements of wound dressings are highly expensive, causing a huge amount of burden on the national health care systems. Smart bandages have emerged to provide in situ physiochemical surveillance in real time at the wound site. These bandages integrate smart sensors to detect the condition of wound infection based on various parameters, such as pH, temperature and oxygen level in the wound which reduces the frequency of changing the wound dressings and its associated complications. These devices can continually monitor the healing process, paving the way for tailored therapy and improved quality of patient's life. In this review, we present an overview of recent advances in biosensors for real time monitoring of pH, temperature, and oxygen in chronic wounds in order to assess infection status. We have elaborated the recent progress in quantitative monitoring of several biomarkers important for assessing wounds infection status and its detection using smart biosensors. The review shows that real-time monitoring of wound status by quantifying specific biomarkers, such as pH, temperature and tissue oxygenation to significantly aid the treatment and care of chronic infected wounds.

11.
Environ Res ; 238(Pt 1): 117083, 2023 12 01.
Article En | MEDLINE | ID: mdl-37690629

Liquid biopsy includes the isolating and analysis of non-solid biological samples enables us to find new ways for molecular profiling, prognostic assessment, and better therapeutic decision-making in cancer patients. Despite the conventional theory of tumor development, a non-vertical transmission of DNA has been reported among cancer cells and between cancer and normal cells. The phenomenon referred to as horizontal gene transfer (HGT) has the ability to amplify the advancement of tumors by disseminating genes that encode molecules conferring benefits to the survival or metastasis of cancer cells. Currently, common liquid biopsy approaches include the analysis of extracellular vesicles (EVs) and tumor-free DNA (tfDNA) derived from primary tumors and their metastatic sites, which are well-known HGT mediators in cancer cells. Current technological and molecular advances expedited the high-throughput and high-sensitive HGT materials analyses by using new technologies, such as microfluidics in liquid biopsies. This review delves into the convergence of microfluidic-based technologies and the investigation of Horizontal Gene Transfer (HGT) materials in cancer liquid biopsy. The integration of microfluidics offers unprecedented advantages such as high sensitivity, rapid analysis, and the ability to analyze rare cell populations. These attributes are instrumental in detecting and characterizing CTCs, circulating nucleic acids, and EVs, which are carriers of genetic cargo that could potentially undergo HGT. The phenomenon of HGT in cancer has raised intriguing questions about its role in driving genomic diversity and acquired drug resistance. By leveraging microfluidic platforms, researchers have been able to capture and analyze individual cells or genetic material with enhanced precision, shedding light on the potential transfer of genetic material between cancer cells and surrounding stromal cells. Furthermore, the application of microfluidics in single-cell sequencing has enabled the elucidation of the genetic changes associated with HGT events, providing insights into the evolution of tumor genomes. This review also discusses the challenges and opportunities in studying HGT materials using microfluidic-based technologies. In conclusion, microfluidic-based technologies have significantly advanced the field of cancer liquid biopsy, enabling the sensitive and accurate detection of HGT materials. As the understanding of HGT's role in tumor evolution and therapy resistance continues to evolve, the synergistic integration of microfluidics and HGT research promises to provide valuable insights into cancer biology, with potential implications for precision oncology and therapeutic strategies.


Microfluidics , Neoplasms , Humans , Gene Transfer, Horizontal , Precision Medicine , Liquid Biopsy , DNA
12.
Int J Biol Macromol ; 253(Pt 1): 126697, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37673138

Wound healing is a multifaceted and complex process that includes inflammation, hemostasis, remodeling, and granulation. Failures in any link may cause the healing process to be delayed. As a result, wound healing has always been a main research focus across the entire medical field, posing significant challenges and financial burdens. Hence, the current investigation focused on the design and development of arginine-modified chitosan/PVA hydrogel-based microneedles (MNs) as a curcumin (CUR) delivery system for improved wound healing and antibacterial activity. The substrate possesses exceptional swelling capabilities that allow tissue fluid from the wound to be absorbed, speeding up wound closure. The antibacterial activity of MNs was investigated against S. aureus and E. coli. The results revealed that the developed CUR-loaded MNs had increased antioxidant activity and sustained drug release behavior. Furthermore, after being loaded in the developed MNs, it revealed improved antibacterial activity of CUR. Wound healing potential was assessed by histopathological analysis and wound closure%. The observed results suggest that the CUR-loaded MNs greatly improved wound healing potential via tissue regeneration and collagen deposition, demonstrating the potential of developed MNs patches to be used as an effective carrier for wound healing in healthcare settings.


Chitosan , Curcumin , Hydrogels/pharmacology , Chitosan/pharmacology , Curcumin/pharmacology , Escherichia coli , Staphylococcus aureus , Wound Healing , Anti-Bacterial Agents/pharmacology
13.
Environ Res ; 238(Pt 1): 116979, 2023 12 01.
Article En | MEDLINE | ID: mdl-37660871

Calcium (Ca2+) homeostasis is essential for maintaining physiological processes in the body. Disruptions in Ca2+ signaling can lead to various pathological conditions including inflammation, fibrosis, impaired immune function, and accelerated senescence. Hypocalcemia, a common symptom in diseases such as acute respiratory distress syndrome (ARDS), cancer, septic shock, and COVID-19, can have both potential protective and detrimental effects. This article explores the multifaceted role of Ca2+ dysregulation in inflammation, fibrosis, impaired immune function, and accelerated senescence, contributing to disease severity. Targeting Ca2+ signaling pathways may provide opportunities to develop novel therapeutics for age-related diseases and combat viral infections. However, the role of Ca2+ in viral infections is complex, and evidence suggests that hypocalcemia may have a protective effect against certain viruses, while changes in Ca2+ homeostasis can influence susceptibility to viral infections. The effectiveness and safety of Ca2+ supplements in COVID-19 patients remain a subject of ongoing research and debate. Further investigations are needed to understand the intricate interplay between Ca2+ signaling and disease pathogenesis.


COVID-19 , Hypocalcemia , Neoplasms , Sepsis , Humans , Sepsis/diagnosis , Sepsis/therapy , Inflammation , Fibrosis , COVID-19 Testing
14.
Biomed Pharmacother ; 165: 115156, 2023 Sep.
Article En | MEDLINE | ID: mdl-37536030

Impaired wound healing is a major healthcare problem in patients with diabetes often resulting in gangrene, microbial infection and amputation of affected limb. The delay or absence in healing process arises from several abnormalities, among them chronic hypoxia is a major concern due to its associated issues such as lack of collagen deposition, epithelization, fibroplasia, angiogenesis, and resistance to infections at the wound site. To address hypoxia, delivery of oxygen at the wound site through oxygen releasing agents have been proven to be effective therapeutics. Several oxygen releasing nanoparticles such as Sodium Percarbonate (SPC), Calcium Peroxide (CPO), Hydrogen Peroxide, Magnesium Peroxide (MPO) have been investigated in wound healing application. However, the uncontrolled/burst release of these nanotherapeutic agents and its accompanied cytotoxicity pose a barrier in expediting the healing process. In this study, a Chitosan-Polyvinyl alcohol (CS-PVA) based hydrogel containing oxygen releasing nanoparticle, calcium peroxide (CPO) was constructed to provide a slow and sustained delivery of oxygen for at least 5 days. In-vitro cell culture studies with this material using fibroblast and endothelial cell line exhibited improved biocompatibility, cell viability and enhanced proliferation in comparison with the control group. Additionally, cell migration study using scratch assay method showed superior cell migration ability of our proposed materials. Furthermore, In vivo study using diabetic rat model showed accelerated wound closure rate compared to untreated control wounds.


Chitosan , Diabetes Mellitus , Rats , Animals , Chitosan/pharmacology , Oxygen/pharmacology , Wound Healing , Hypoxia
15.
Int J Biol Macromol ; 250: 126174, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37558025

Diabetic wounds are among the major healthcare challenges, consuming billions of dollars of resources and resulting in high numbers of morbidity and mortality every year. Lack of sufficient oxygen supply is one of the most dominant causes of impaired healing in diabetic wounds. Numerous clinical and experimental studies have demonstrated positive outcomes as a result of delivering oxygen at the diabetic wound site, including enhanced angiogenesis, antibacterial and cell proliferation activities. However, prolonged and sustained delivery of oxygen to improve the wound healing process has remained a major challenge due to rapid release of oxygen from oxygen sources and limited penetration of oxygen into deep skin tissues. Hydrogels made from sugar-based polymers such as chitosan and hyaluronic acid, and proteins such as gelatin, collagen and hemoglobin have been widely used to deliver oxygen in a sustained delivery mode. This review presents an overview of the recent advances in oxygen releasing hydrogel based patches as a therapeutic modality to enhance diabetic wound healing. Various types of oxygen releasing wound healing patch have been discussed along with their fabrication method, release profile, cytocompatibility and in vivo results. We also briefly discuss the challenges and prospects related to the application of oxygen releasing biomaterials as wound healing therapeutics.

16.
Environ Res ; 237(Pt 2): 116980, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37648188

Melanoma, an aggressive malignant tumor originating from melanocytes in humans, is on the rise globally, with limited non-surgical treatment options available. Recent advances in understanding the molecular and cellular mechanisms underlying immune escape, tumorigenesis, drug resistance, and cancer metastasis have paved the way for innovative therapeutic strategies. Combination therapy targeting multiple pathways simultaneously has been shown to be promising in treating melanoma, eliciting favorable responses in most melanoma patients. CAR T-cells, engineered to overcome the limitations of human leukocyte antigen (HLA)-dependent tumor cell detection associated with T-cell receptors, offer an alternative approach. By genetically modifying apheresis-collected allogeneic or autologous T-cells to express chimeric antigen receptors, CAR T-cells can appreciate antigens on cell surfaces independently of major histocompatibility complex (MHC), providing a significant cancer cell detection advantage. However, identifying the most effective target antigen is the initial step, as it helps mitigate the risk of toxicity due to "on-target, off-tumor" and establishes a targeted therapeutic strategy. Furthermore, evaluating signaling pathways and critical molecules involved in melanoma pathogenesis remains insufficient. This study emphasizes the novel approaches of CAR T-cell immunoediting and presents new insights into the molecular signaling pathways associated with melanoma.

17.
Environ Res ; 238(Pt 1): 116933, 2023 12 01.
Article En | MEDLINE | ID: mdl-37652218

Cardiovascular diseases (CVDs) present a significant threat to health, with traditional therapeutics based treatment being hindered by inefficiencies, limited biological effects, and resistance to conventional drug. Addressing these challenges requires advanced approaches for early disease diagnosis and therapy. Nanotechnology and nanomedicine have emerged as promising avenues for personalized CVD diagnosis and treatment through theranostic agents. Nanoparticles serve as nanodevices or nanocarriers, efficiently transporting drugs to injury sites. These nanocarriers offer the potential for precise drug and gene delivery, overcoming issues like bioavailability and solubility. By attaching specific target molecules to nanoparticle surfaces, controlled drug release to targeted areas becomes feasible. In the field of cardiology, nanoplatforms have gained popularity due to their attributes, such as passive or active targeting of cardiac tissues, enhanced sensitivity and specificity, and easy penetration into heart and artery tissues due to their small size. However, concerns persist about the immunogenicity and cytotoxicity of nanomaterials, necessitating careful consideration. Nanoparticles also hold promise for CVD diagnosis and imaging, enabling straightforward diagnostic procedures and real-time tracking during therapy. Nanotechnology has revolutionized cardiovascular imaging, yielding multimodal and multifunctional vehicles that outperform traditional methods. The paper provides an overview of nanomaterial delivery routes, targeting techniques, and recent advances in treating, diagnosing, and engineering tissues for CVDs. It also discusses the future potential of nanomaterials in CVDs, including theranostics, aiming to enhance cardiovascular treatment in clinical practice. Ultimately, refining nanocarriers and delivery methods has the potential to enhance treatment effectiveness, minimize side effects, and improve patients' well-being and outcomes.


Cardiovascular Diseases , Nanoparticles , Humans , Tissue Engineering , Nanomedicine/methods , Nanotechnology , Pharmaceutical Preparations , Early Diagnosis
18.
Int J Pharm ; 642: 123186, 2023 Jul 25.
Article En | MEDLINE | ID: mdl-37385356

Propolis-loaded electrospun nanofibers (PENs) have been regarded as promising candidates for biomedical purposes such as wound healing/dressing owing to their outstanding pharmacological and biological properties. This paper focuses on the development of electrospun nanofibers with optimum levels of propolis (PRP) and two polymer types (polycaprolactone (PCL) and polyvinyl alcohol (PVA)). Hence, response surface methodology (RSM) was employed to investigate the variation of the scaffold characteristics including porosity, average diameter, wettability, release, and tensile strength. For each response, a second-order polynomial model with a high coefficient of determination (R2) values ranging from 0.95 to 0.989 was developed using multiple linear regression analysis. The overall optimum region with the best characteristics was found to be at PCL/6 % PRP and PVA/5 % PRP. After selecting the optimal samples, the cytotoxicity assay showed no toxicity for the optimal concentrations of PRP. Furthermore, Fourier transform infrared (FTIR) spectra revealed that no new chemical functional groups were introduced in the PENs. Uniform fibers were found in the optimum samples without the appearance of a bead-like structure in the fibers. In conclusion, nanofibers containing the optimal concentration of PRP with suitable properties can be used in biomedical and tissue engineering.


Nanofibers , Propolis , Polyvinyl Alcohol/chemistry , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Polyesters/chemistry
19.
Carbohydr Polym ; 313: 120512, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37182929

Diabetic foot ulcer (DFU) healing has long been a major medical challenge. The type of dressing is an essential factor in wound healing, prevention of local infection, and scar formation. Today, smart wound dressings or wound healing patches can precisely control drug delivery to the target tissue and prevent this significant complication. Nanofiber (NF) wound dressings are effective in reducing wound scarring and helping to speed up the healing process for DFU. The electrospun NFs have a suitable surface topography, density, and three-dimensional structure, which can be considered an efficient method to produce a substrate for tissue engineering and wound healing. Chitosan (CS) is one of the most well-known biopolymers in wound healing tissue engineering and drug delivery systems. The unique properties of CS make it suitable for biomedical applications. Based on new studies in the field of hemostatic and antimicrobial effects of CS in controlling bleeding and wound healing and application of NF wound dressings, the purpose of this study is a review relevant works on CS-based NFs to improve the DFU.


Chitosan , Diabetes Mellitus , Diabetic Foot , Nanofibers , Humans , Diabetic Foot/drug therapy , Chitosan/therapeutic use , Chitosan/pharmacology , Nanofibers/therapeutic use , Nanofibers/chemistry , Bandages , Wound Healing , Cicatrix
20.
Bioengineering (Basel) ; 10(5)2023 Apr 28.
Article En | MEDLINE | ID: mdl-37237612

Magnetic resonance imaging (MRI) is commonly used in medical diagnosis and minimally invasive image-guided operations. During an MRI scan, the patient's electrocardiogram (ECG) may be required for either gating or patient monitoring. However, the challenging environment of an MRI scanner, with its several types of magnetic fields, creates significant distortions of the collected ECG data due to the Magnetohydrodynamic (MHD) effect. These changes can be seen as irregular heartbeats. These distortions and abnormalities hamper the detection of QRS complexes, and a more in-depth diagnosis based on the ECG. This study aims to reliably detect R-peaks in the ECG waveforms in 3 Tesla (T) and 7T magnetic fields. A novel model, Self-Attention MHDNet, is proposed to detect R peaks from the MHD corrupted ECG signal through 1D-segmentation. The proposed model achieves a recall and precision of 99.83% and 99.68%, respectively, for the ECG data acquired in a 3T setting, while 99.87% and 99.78%, respectively, in a 7T setting. This model can thus be used in accurately gating the trigger pulse for the cardiovascular functional MRI.

...